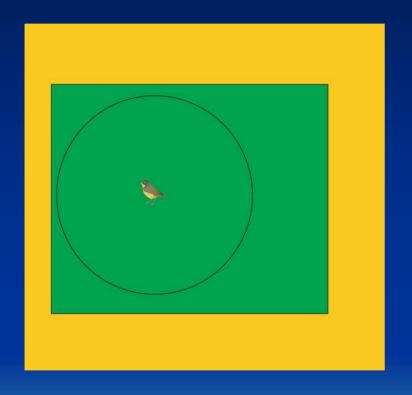
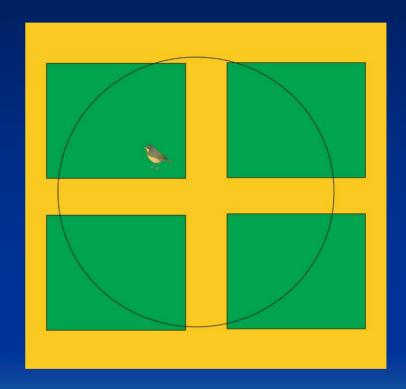

Methods for Generating Patch and Landscape Metrics

Ed Laurent, Ph.D.
Biodiversity and Spatial Information Center
North Carolina State University
Raleigh, NC

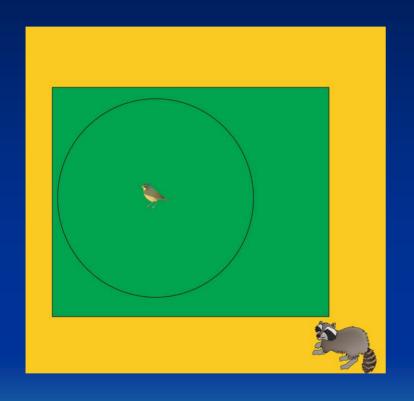
Ed_Laurent@ncsu.edu

Conservation Design Workshop St. Louis, MO April 11, 2006


What Are Landscape and Patch Metrics?


- Algorithms for quantifying spatial heterogeneity.
- Efforts to measure landscape patterns are often driven by the premise that patterns are linked to ecological processes

Edges — Predation


Fragmentation —— Energy Expenditure

Pattern-Process

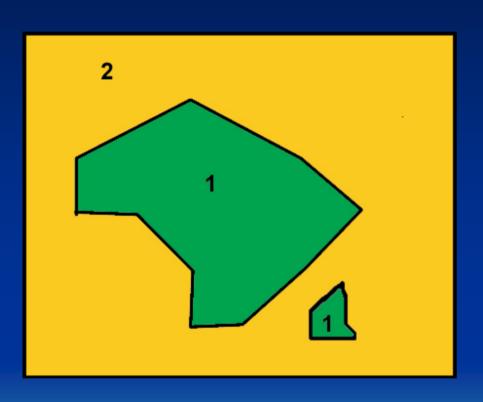
Pattern-Process

Why Are Landscape and Patch Metrics Useful?

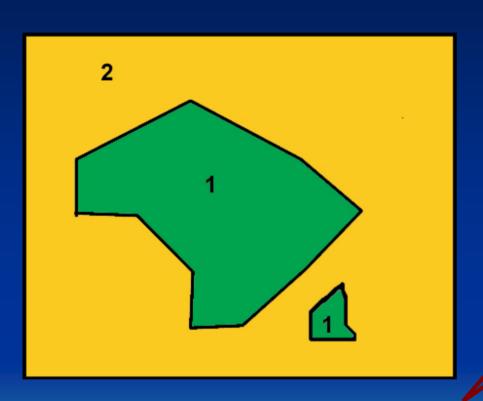
- More and more maps are becoming available for patternprocess predictions over large areas
- Permit a coarse approximation of various landscape processes
- Faster and less expensive than extensive surveys
- Facilitate efficient sampling for research and monitoring
- Many more...

Definitions

- Landscape: "Area that is spatially heterogeneous in at least one factor of interest."
- Patch: "Surface area that differs from its surroundings in nature or appearance."
- Scale: "...the spatial or temporal dimension of an object or a process."
 - Grain: Smallest sampling unit (e.g., 30m pixel)
 - Extent: Entire area or time of consideration (e.g., a study region or state)
- Level: "...a place within a biotic hierarchy" or a relative precision of pattern characterization.

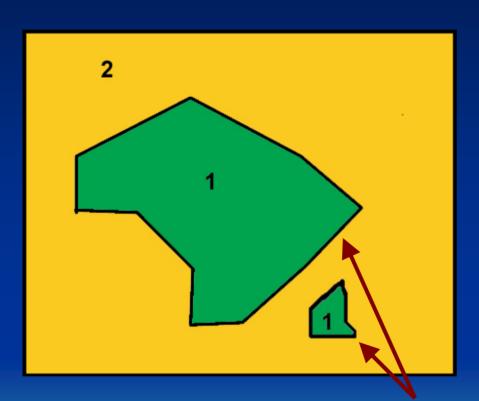

Turner et al. 2001. Landscape Ecology in Theory and Practice. Springer-Verlag

Examples of Metrics


- Patch metrics: summarize the shape or size of patches
 - Area, perimeter, width
 - Core area: requires a threshold distance to edge
- Landscape metrics: quantify the spatial relationships among patches within the landscape
 - Composition
 - Fractional Cover: what proportion of the landscape is occupied by a given class
 - Richness: the number of classes
 - Evenness: the relative abundance of classes.
 - Configuration
 - Contagion and Dispersion: distinguish between landscapes with clumped or evenly distributed patches
 - Isolation: based on the distances between similarly classified patches
- Neighbor metrics: quantify spatial relationships among objects
 - Calculate distances between similarly classified features (patches, lines)
 - Quantify distance road or water (distance to edge can be difficult)

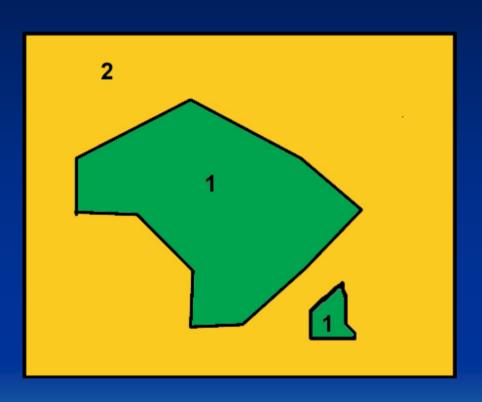
Data Types

- Vector: each object explicitly represented as points, lines or polygons.
 - Pros: small files; permits topology (i.e., explicit spatial relationships between connecting or adjacent objects)
 - Cons: complex data structure (Slow!); can require much more time to create; manipulations require complex algorithms
- Raster: data is divided into a grid consisting of individual cells or pixels. Each cell holds a numeric (e.g., elevation in meters) or descriptive (e.g., land use) value.
 - Pros: simple data structure; easy to represent continuous variables (e.g., intensity); filtering and mathematical modeling is relatively simple
 - Cons: Large files; no topology; objects are generalized (limited by cell size)



2	2	2	2	2	2	2	2
2	2	2	3	2	2	2	2
2	2 [1	1	1	/	2	2
2	2	1-	1	1	1	1	2
2	2	2	2	1	1/	2	2
2	2	2	2	_4~	2		2
2	2	2	2	2	2	2	2

2	2	2	2	2	2	2	2
2	2	2	3	2/	2	2	2
2	2 [1	1	1	1	2	2
2	2	1	1	1	1	1>	2
2	2/	2	2	1	1/	2	2
7	2	2	2	-4-	2		2
2	2	2	2	2	2	2	2


Inaccuracies due to less spatial precision

2	2	2	2	2	2	2	2
2	2	2	3	2	2	2	2
2	2 [1	1	1	1	2	2
2	2	-1	1	1	1	1	2
2	2	2	2	1	1/	2	2
2	2	2	2	-4-	2		2
2	2	2	2	2	2	2	2

Explicitly defined as two objects

Two objects?

2	2	2	2	2	2	2	2
2	2	2	3	2/	2	2	2
2	2 [1	1	1	7	2	2
2	2	-1	1	1	1	1>	2
2	2	2	2	1	1/	2	2
2	2	2	2	-4-	2		2
2	2	2	2	2	2	2	2

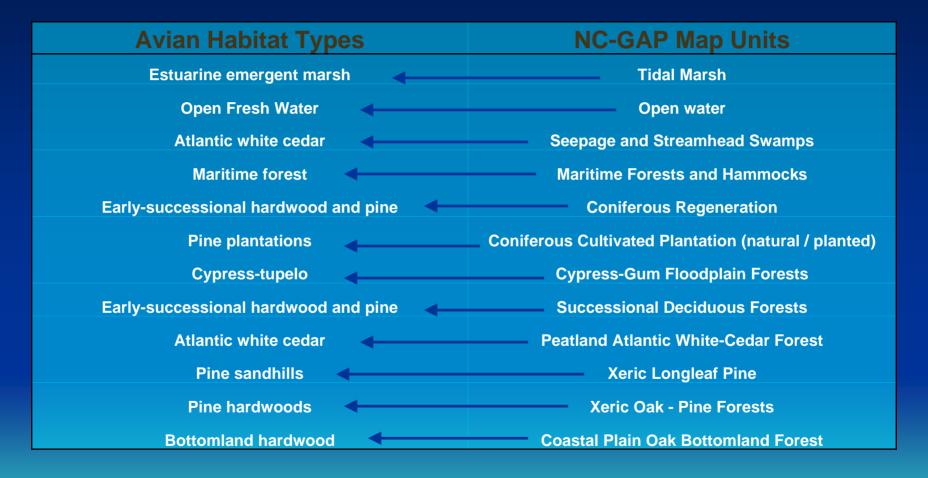
Shift in study region boundary

Software

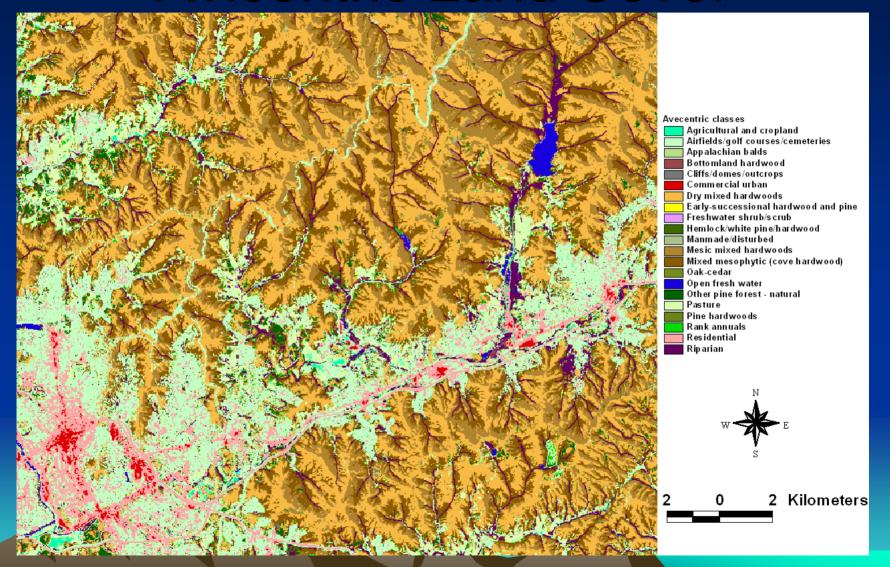
Stand alone

- Various GIS & RS packages (e.g., ArcGIS, GRASS, Imagine)
- FRAGSTATS http://www.umass.edu/landeco/research/fragstats/fragstats.html
- APACK http://landscape.forest.wisc.edu/projects/apack/
- IAN http://landscape.forest.wisc.edu/projects/IAN/

GIS extensions

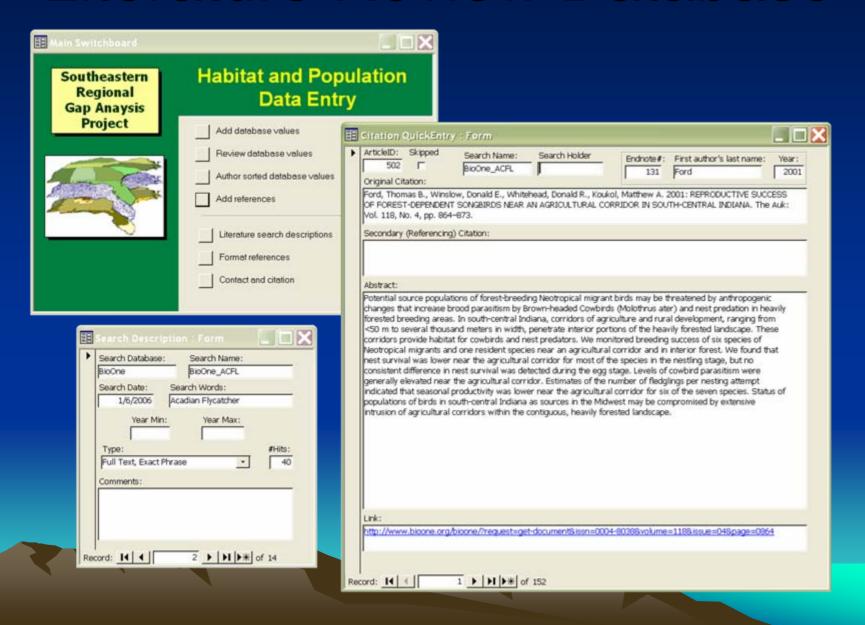

- Patch Analyst for ArcView 3.x http://flash.lakeheadu.ca/~rrempel/patch/
- r.le programs that interface with GRASS

Anthropocentric vs. Functional Landscape Descriptions


"...the choice of categories to include in a pattern analysis is critical."
(Turner et al. 2001)

- Anthropocentric: human defined landscape heterogeneity
 - How would you divide the landscape?
 - Data limitations (e.g., sensor resolution, spectral variability)
- Functional: Heterogeneity defined by the process of interest
 - Example: descriptions that reflect how other species' behaviors or population rates differ across the landscape
 - Knowledge limitations

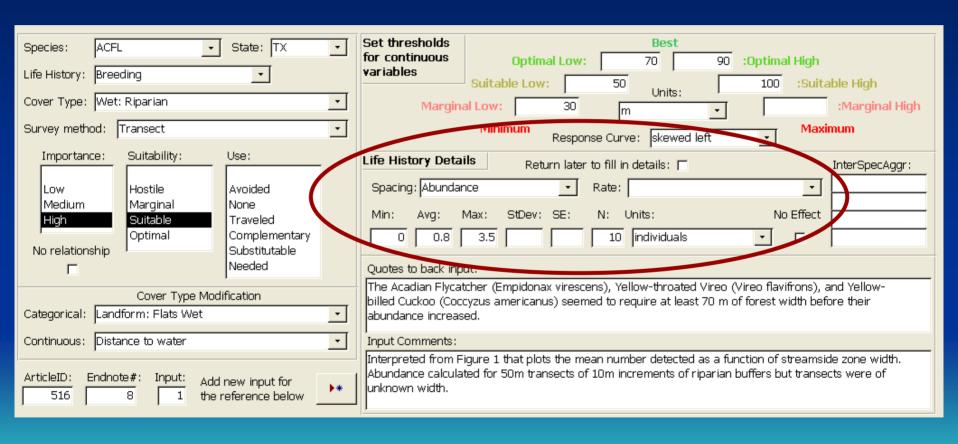
Crosswalk Anthropocentric to Functional


Avicentric Land Cover

Example of Documenting and Using Patch and Neighborhood Metrics by SE-GAP

Map Algebra
Stating Assumptions
Sources of Errors

Literature Review Database


Habitat Suitability

Species: A	CFL State: TX	-							
Life History: Br	ife History: Breeding -								
Cover Type: W	/et: Riparian	→							
Survey method: Transect									
Importance: Low Medium	Hostile Avoided None								
High No relationship	Suitable Optimal Optimal Substitutable Needed								
ArticleID: Endnote#: Input: Add new input for 516 8 1 the reference below									

Landscape Modifiers

	Species: ACFL State: TX
	Life History: Breeding T
	Cover Type: Wet: Riparian
	Survey method: Transect
	Importance: Suitability: Use: Low Hostile Marginal None Traveled Complementary Substitutable Needed Needed
	Cover Type Modification Categorical: Landform: Flats Wet
	Continuous: Distance to water
Set thresholds for continuous variables	Best Optimal Low: 70 90 :Optimal High Suitable Low: 50 100 :Suitable High
Margin	al Low: 30 m · Marginal High
	Minimum Response Curve: skewed left ✓ Maximum

Spatially Explicit Population Descriptions

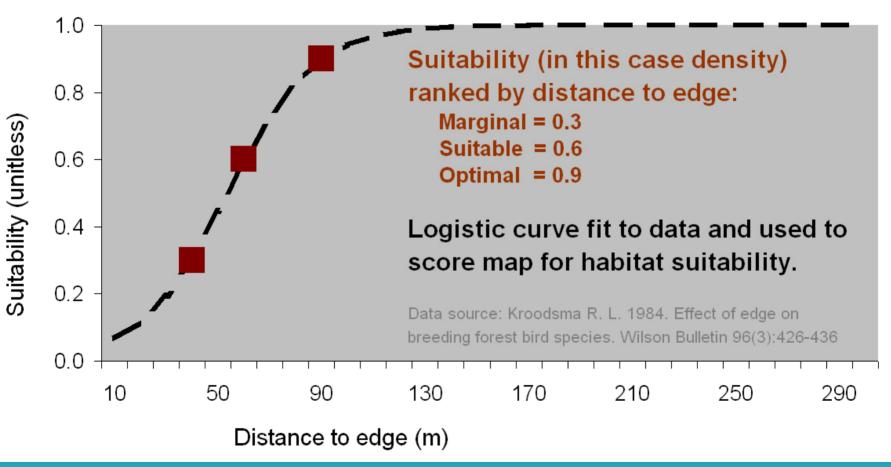
Queries

Species	Rate	sMin	sAvg	sMax	Standard units	Cover Type	Categorical	Continuous
ACFL	Breeding synchrony	0.2	0.3	0.3	unitless	Wet: Riparian		
ACFL	Daily nest failure (last egg)	0.3		1.2	%	UpForest: Dry mixed hardwoods		
ACFL	Daily nest mortality	1.3	3.8	5.7	% (Mayfield corrected)	UpForest: Dry mixed hardwoods		Canopy Cover
ACFL	Daily nest predation		2.8		% (Mayfield corrected)	UpForest: Dry mixed hardwoods		
ACFL	Daily nest survival	73.0		92.0	% (Mayfield corrected)	UpForest: Dry mixed hardwoods		Stand Age
ACFL	Daily nest survival	94.7	95.6	96.5	% (Mayfield corrected)	UpForest: Dry mixed hardwoods		
ACFL	Daily nest survival		97.8		% (Mayfield corrected)	UpForest: Mesic mixed hardwood		
ACFL	Daily nest survival		94.2		% (Mayfield corrected)	Wet: Bottomland hardwood		Stand Age
ACFL	Daily nest survival	92.0	94.8	96.5	% (Mayfield corrected)	Wet: Bottomland hardwood		
ACFL	Daily nest survival	81.8	95.1	100.0	% (Mayfield corrected)	Wet: Bottomland hardwood		
ACFL	Daily nest survival				fledglings	UpForest: Dry mixed hardwoods		Non-contiguous Pa
ACFL	Daily survival during incubation	97.5		98.0	% (Mayfield corrected)	UpForest: Dry mixed hardwoods	Edge: Forest/Ag	Non-contiguous Pa
ACFL	Daily survival during incubation		97.6		% (Mayfield corrected)	UpForest: Mesic mixed hardwood		
ACFL	Daily survival during incubation	92.0	94.9	96.6	% (Mayfield corrected)	Wet: Bottomland hardwood		
ACFL	Daily survival during nestling sta	93.8		96.2	% (Mayfield corrected)	UpForest: Dry mixed hardwoods	Edge: Forest/Ag	Non-contiguous Pa
ACFL	Daily survival during nestling sta		97.9		% (Mayfield corrected)	UpForest: Mesic mixed hardwood		
ACFL	Daily survival during nestling sta	91.5	94.5	97.0	% (Mayfield corrected)	Wet: Bottomland hardwood		
ACFL	Eggs per nest		2.8		eggs	UpForest: Mesic mixed hardwood		
ACFL	Eggs per nest	1.0	2.5	4.0	eggs	Wet: Riparian		
ACFL	Extrapair young		41.0		%	Wet: Riparian		

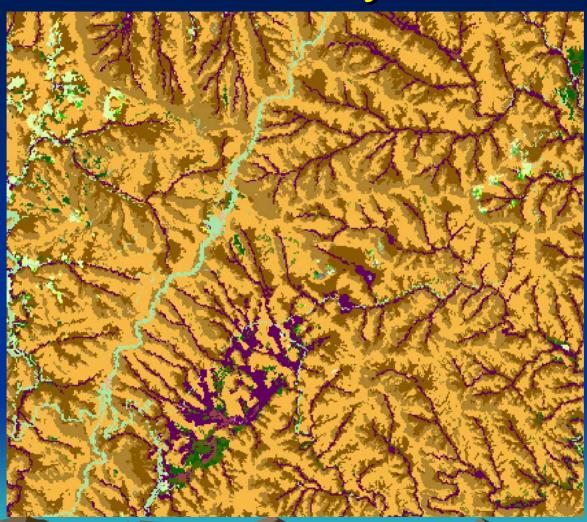
Each record is one entry in the previous form

Map Algebra

Logistic (S-shaped)

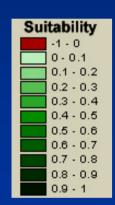

```
1/(1+ a *EXP(- b *( [Map Value] / c )))
```

Example: 1 / (1+ 40 *EXP(- 6 *([Dist_Edge] / 90)))

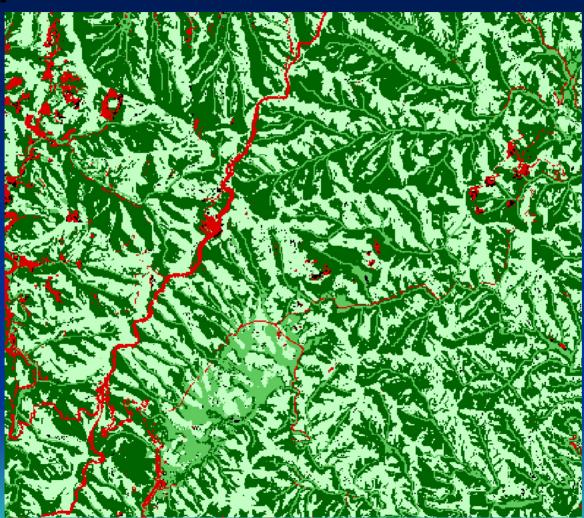

- a affects where upturn begins.
- b affects slope of the "S". Larger numbers shrink the curve.
- c also affects slope of the "S" but less so. Larger numbers stretch the curve.

Mapping Suitability Relationships

Habitat Suitability Prediction

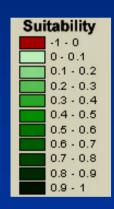

<u>Input</u>

Avicentric land cover

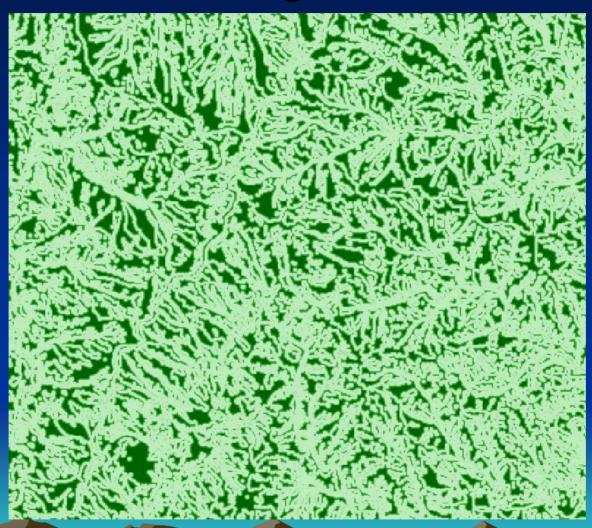

6 km

Lump Classes of Similar Suitability

Acadian Flycatcher



<u>Input</u>

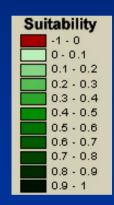

Flycatchercentric land cover

Calculate and Weight Distance to Edge

<u>Input</u>

Distance to Edge

Map Algebra 2: Combine Maps


- Suitability ranked from 0 to 1:
 - Suitability under all conditions = Map1 * Map2 * Map3
- Abundance/Density Modeling
 - Extrapolate research results from sample locations (e.g., Logistic Regression)
- Population modeling
 - Combine maps of vital population rates that vary under different spatial conditions:

$$dR/dt = a*R - b*R*F$$

 $dF/dt = e*b*R*F - c*F$

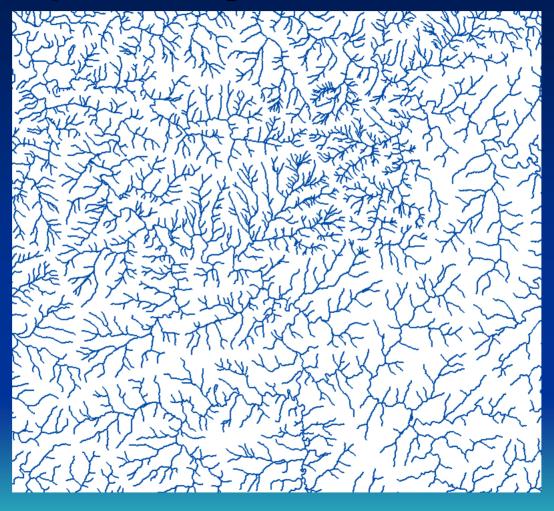
- Where:
 - R are the number of prey
 - F are the number of predators
- and the parameters are defined by:
 - a is the natural growth rate of prey in the absence of predation,
 - c is the natural death rate of predators in the absence of prey,
 - b is the death rate per encounter of prey due to predation,
 - e is the efficiency of turning predated prey into predators.

Habitat Suitability Prediction

Acadian Flycatcher

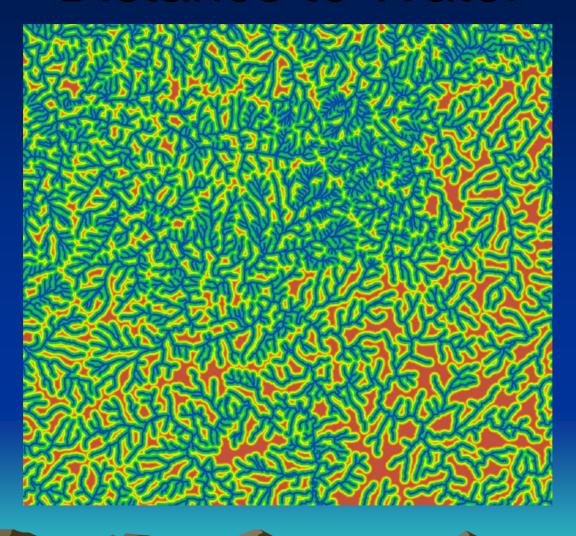
Explicitly State Assumptions!

Allows testing to validate and refine predictions

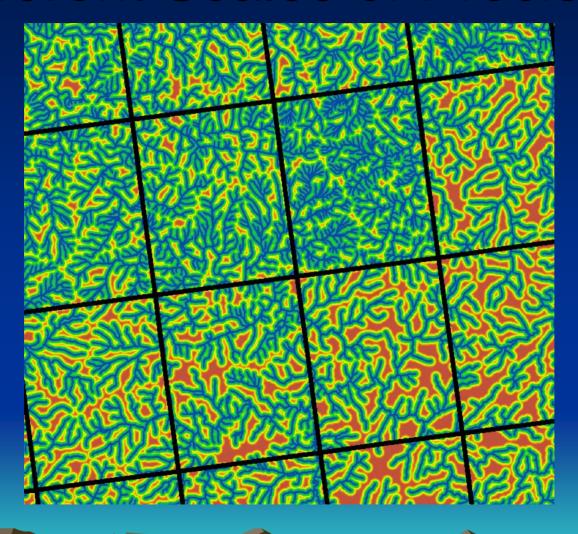

Example assumptions

- Land cover, distance to water and distance to edge are all equally important considerations for mapping habitat suitability
- Density, nesting success and predation rates are all equally relevant indications of habitat suitability
- -Relationships between patch/landscape/neighbor descriptions and habitat suitability are similar everywhere.

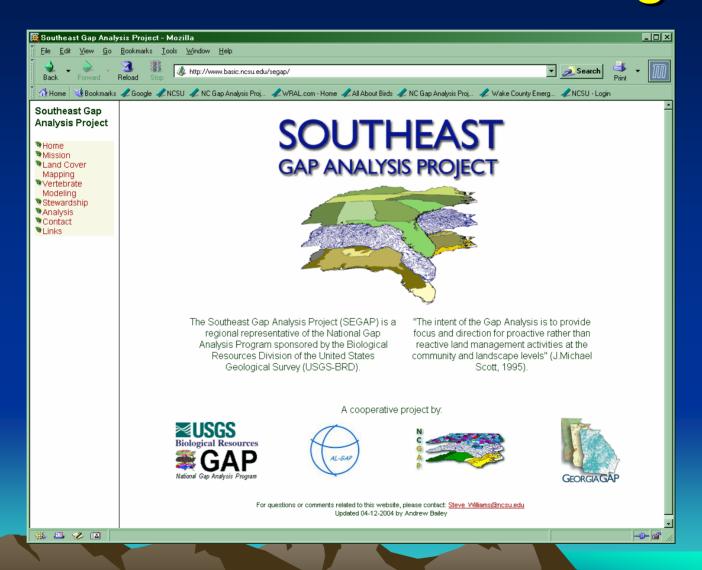
Some Sources of Error


- Age of data
- Precision and availability of information
- Positional accuracy
- Classification appropriateness and accuracy
- Inconsistencies during data creation
 - Different interpreters or methods
 - Different classification schemes
 - Different scales of precision

Example: Digital Line Graphs



Used in the National Hydrographic Dataset


Distance to Water

Different Scales of Precision

www.basic.ncsu.edu/segap

